Nodal Tidal Cycle of 18.6 Yr.: Its Importance in Sea-Level Curves of the East Coast of the United States and Its Value in Explaining Long-Term Sea-Level Changes

Geology ◽  
1973 ◽  
Vol 1 (3) ◽  
pp. 141 ◽  
Author(s):  
Clifford A. Kaye ◽  
Gary W. Stuckey
PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9044
Author(s):  
Adam T. Carpenter

Sea level rise poses a substantial concern to communities worldwide. Increased inundation, storm surge, saltwater intrusion, and other impacts create challenges which will require considerable planning to address. Recognizing the broad and differing scope of sea level rise issues and the variability of policy options to address them, local planning frameworks are necessary in addition to tools and resources available from state and federal governments. To help assess priorities and preferences on sea level rise planning, a survey of 503 persons affiliated with coastal communities on the East Coast of the United States was conducted in December 2017. This survey studied key aspects locally-driven sea level rise plans, including planning priorities, funding options, methods to resolve conflict, and potential responses. Six key findings address these and other concerns to provide the foundation of a locally driven framework for public officials.


2019 ◽  
Author(s):  
Adam T Carpenter

Sea Level Rise poses a substantial concern to communities worldwide. Increased inundation, storm surge, salt water intrusion, and other impacts create challenges which will require considerable planning to address. Recognizing the broad and differing scope of sea level rise issues and the variability of policy options to address them, local planning frameworks are necessary in addition to tools and resources available from state and federal governments. To help assess priorities and preferences on sea level rise planning, a survey of 503 persons affiliated with coastal communities on the East Coast of the United States was conducted in December 2017. This survey studied key aspects locally-driven sea level rise plans, including planning priorities, funding options, methods to resolve conflict, and potential responses. Six key findings address these and other concerns to provide the foundation of a locally driven framework for public officials.


2018 ◽  
Vol 115 (30) ◽  
pp. 7729-7734 ◽  
Author(s):  
Christopher G. Piecuch ◽  
Klaus Bittermann ◽  
Andrew C. Kemp ◽  
Rui M. Ponte ◽  
Christopher M. Little ◽  
...  

Identifying physical processes responsible for historical coastal sea-level changes is important for anticipating future impacts. Recent studies sought to understand the drivers of interannual to multidecadal sea-level changes on the United States Atlantic and Gulf coasts. Ocean dynamics, terrestrial water storage, vertical land motion, and melting of land ice were highlighted as important mechanisms of sea-level change along this densely populated coast on these time scales. While known to exert an important control on coastal ocean circulation, variable river discharge has been absent from recent discussions of drivers of sea-level change. We update calculations from the 1970s, comparing annual river-discharge and coastal sea-level data along the Gulf of Maine, Mid-Atlantic Bight, South Atlantic Bight, and Gulf of Mexico during 1910–2017. We show that river-discharge and sea-level changes are significantly correlated (p<0.01), such that sea level rises between 0.01 and 0.08 cm for a 1 km3 annual river-discharge increase, depending on region. We formulate a theory that describes the relation between river-discharge and halosteric sea-level changes (i.e., changes in sea level related to salinity) as a function of river discharge, Earth’s rotation, and density stratification. This theory correctly predicts the order of observed increment sea-level change per unit river-discharge anomaly, suggesting a causal relation. Our results have implications for remote sensing, climate modeling, interpreting Common Era proxy sea-level reconstructions, and projecting coastal flood risk.


Oceanography ◽  
2011 ◽  
Vol 24 (2) ◽  
pp. 70-79 ◽  
Author(s):  
Simon Engelhart ◽  
Benjamin Horton ◽  
Andrew Kemp

Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 756
Author(s):  
Robert Mendelsohn

The National Atmospheric and Oceanic Administration (NOAA) calculates the surge probability distribution along the coast from their long-term tidal stations. This process is sufficient for predicting the surge from common storms but tends to underestimate large surges. Across 23 long-term tidal stations along the East Coast of the United States, 100-year surges were observed 49 times, although they should have occurred only 23 times. We hypothesize that these 100-year surges are not the tail outcome from common storms but are actually caused by major hurricanes. Matching these 100-year surges with major hurricanes revealed that major hurricanes caused 43 of the 49 surges. We consequently suggest a revised approach to estimating the surge probability distribution. We used tidal data to estimate the probability of common surges but analyzed major hurricane surges separately, using the return rate of major hurricanes and the observed surge from each major hurricane to predict hurricane surges. The revision reveals that expected coastal flooding damage is higher than we thought, especially in the southeast United States.


2016 ◽  
Vol 35 (3) ◽  
pp. 31-37 ◽  
Author(s):  
Albert Parker

Abstract We show here the presence of significant “coldspot” of sea level rise along the West Coast of the United States and Canada (including Alaska). The 30-years sea level for the area are mostly falling also at subsiding locations as San Francisco and Seattle where subsidence is responsible for a long term positive rate of rise. The 20 long term tide gauges of the area of length exceeding the 60-years length have a naïve average rate of rise −0.729 mm/year in the update 30-Apr-2015, down from −0.624 mm/year in the update 14-Feb-2014. Therefore, along the West Coast of the United States and Canada the sea levels are on average falling, and becoming more and more negative.


2019 ◽  
Author(s):  
Adam T Carpenter

Sea Level Rise poses a substantial concern to communities worldwide. Increased inundation, storm surge, salt water intrusion, and other impacts create challenges which will require considerable planning to address. Recognizing the broad and differing scope of sea level rise issues and the variability of policy options to address them, local planning frameworks are necessary in addition to tools and resources available from state and federal governments. To help assess priorities and preferences on sea level rise planning, a survey of 503 persons affiliated with coastal communities on the East Coast of the United States was conducted in December 2017. This survey studied key aspects locally-driven sea level rise plans, including planning priorities, funding options, methods to resolve conflict, and potential responses. Six key findings address these and other concerns to provide the foundation of a locally driven framework for public officials.


Sign in / Sign up

Export Citation Format

Share Document